Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 57,648 bioRxiv papers from 265,372 authors.

Most downloaded bioRxiv papers, since beginning of last month

56,291 results found. For more information, click each entry to expand.

41: Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision
more details view paper

Posted to bioRxiv 05 Dec 2018

Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision
1,256 downloads biophysics

Simao Coelho, Jongho baek, Matthew S Graus, James M Halstead, Philip R Nicovich, Kristen Feher, Hetvi Gandhi, Katharina Gaus

Single-molecule localization microscopy (SMLM) promises to provide truly molecular scale images of biological specimens. However, mechanical instabilities in the instrument, readout errors and sample drift constitute significant challenges and severely limit both the useable data acquisition length and the localization accuracy of single molecule emitters. Here, we developed an actively stabilized total internal fluorescence (TIRF) microscope that performs 3D real-time drift corrections and achieves a stability of ≤1 nm. Self-alignment of the emission light path and corrections of readout errors of the camera automate channel alignment and ensure localization precisions of 1-4 nm in DNA origami structures and cells for different labels. We used Feedback SMLM to measure the separation distance of signaling receptors and phosphatases in T cells. Thus, an improved SMLM enables direct distance measurements between molecules in intact cells on the scale between 1-20 nm, potentially replacing Forster resonance energy transfer (FRET) to quantify molecular interactions. In summary, by overcoming the major bottlenecks in SMLM imaging, it is possible to generate molecular images with nanometer accuracy and conduct distance measurements on the biological relevant length scales.

42: Systematic comparative analysis of single cell RNA-sequencing methods
more details view paper

Posted to bioRxiv 09 May 2019

Systematic comparative analysis of single cell RNA-sequencing methods
1,230 downloads genomics

Jiarui Ding, Xian Adiconis, Sean K Simmons, Monika S. Kowalczyk, Cynthia C. Hession, Nemanja D. Marjanovic, Travis K Hughes, Marc H Wadsworth, Tyler Burks, Lan T. Nguyen, John Y. H. Kwon, Boaz Barak, William Ge, Amanda J. Kedaigle, Shaina Carroll, Shuqiang Li, Nir Hacohen, Orit Rozenblatt-Rosen, Alex K Shalek, Alexandra-Chloé Villani, Aviv Regev, Joshua Z Levin

A multitude of single-cell RNA sequencing methods have been developed in recent years, with dramatic advances in scale and power, and enabling major discoveries and large scale cell mapping efforts. However, these methods have not been systematically and comprehensively benchmarked. Here, we directly compare seven methods for single cell and/or single nucleus profiling from three types of samples -- cell lines, peripheral blood mononuclear cells and brain tissue -- generating 36 libraries in six separate experiments in a single center. To analyze these datasets, we developed and applied scumi, a flexible computational pipeline that can be used for any scRNA-seq method. We evaluated the methods for both basic performance and for their ability to recover known biological information in the samples. Our study will help guide experiments with the methods in this study as well as serve as a benchmark for future studies and for computational algorithm development.

43: Cell types of the human retina and its organoids at single-cell resolution: developmental convergence, transcriptomic identity, and disease map
more details view paper

Posted to bioRxiv 16 Jul 2019

Cell types of the human retina and its organoids at single-cell resolution: developmental convergence, transcriptomic identity, and disease map
1,222 downloads neuroscience

Cameron S. Cowan, Magdalena Renner, Brigitte Gross-Scherf, David Goldblum, Martin Munz, Jacek Krol, Tamas Szikra, Panagiotis Papasaikas, Rachel Cuttat, Annick Waldt, Roland Diggelmann, Claudia P. Patino-Alvarez, Nadine Gerber-Hollbach, Sven Schuierer, Yanyan Hou, Aldin Srdanovic, Marton Balogh, Riccardo Panero, Pascal W. Hasler, Akos Kusnyerik, Arnold Szabo, Michael B. Stadler, Selim Orguel, Andreas Hierlemann, Hendrik P. N. Scholl, Guglielmo Roma, Florian Nigsch, Botond Roska

How closely human organoids recapitulate cell-type diversity and cell-type maturation of their target organs is not well understood. We developed human retinal organoids with multiple nuclear and synaptic layers. We sequenced the RNA of 158,844 single cells from these organoids at six developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable 'developed' state at a rate similar to human retina development in vivo and the transcriptomes of organoid cell types converged towards the transcriptomes of adult peripheral retinal cell types. The expression of disease-associated genes was significantly cell-type specific in adult retina and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in adult human retinas.

44: Microtubules promote intercellular contractile force transmission during tissue folding
more details view paper

Posted to bioRxiv 04 Feb 2019

Microtubules promote intercellular contractile force transmission during tissue folding
1,221 downloads developmental biology

Clint Shijun Ko, Vardges Tserunyan, Adam C Martin

During development, forces transmitted between cells are critical for sculpting epithelial tissues. Actomyosin contractility in the middle of the cell apex (medioapical) can change cell shape (e.g., apical constriction), but can also result in force transmission between cells via attachments to adherens junctions. How actomyosin networks maintain attachments to adherens junctions under tension is poorly understood. Here, we discovered that microtubules promote actomyosin intercellular attachments in epithelia during Drosophila mesoderm invagination. First, we used live imaging to show a novel arrangement of the microtubule cytoskeleton during apical constriction: medioapical Patronin (CAMSAP) foci formed by actomyosin contraction organized an apical non-centrosomal microtubule network. Microtubules were required for mesoderm invagination but were not necessary for initiating apical contractility or adherens junction assembly. Instead, microtubules promoted connections between medioapical actomyosin and adherens junctions. These results delineate a role for coordination between actin and microtubule cytoskeletal systems in intercellular force transmission during tissue morphogenesis.

45: Reconstructing temporal and spatial dynamics in single-cell experiments
more details view paper

Posted to bioRxiv 09 Jul 2019

Reconstructing temporal and spatial dynamics in single-cell experiments
1,219 downloads systems biology

Karsten Kuritz, Daniela Stöhr, Daniela Maichl, Nadine Pollak, Markus Rehm, Frank Allgöwer

Modern cytometry methods allow collecting complex, multi-dimensional data sets from heterogeneous cell populations at single-cell resolution. While methods exist to describe the progression and order of cellular processes from snapshots of such populations, these descriptions are limited to arbitrary pseudotime scales. Here we describe MAPiT, an universal transformation method that recovers real-time dynamics of cellular processes from pseudotime scales. As use cases, we applied MAPiT to two prominent problems in the flow-cytometric analysis of heterogeneous cell populations: (1) recovering the kinetics of cell cycle progression in unsynchronized and thus unperturbed cell populations, and (2) recovering the spatial arrangement of cells within multi-cellular spheroids prior to spheroid dissociation for cytometric analysis. Since MAPiT provides a theoretic basis for the relation of pseudotime values to real temporal and spatial scales, it can be used broadly in the analysis of cellular processes with snapshot data from heterogeneous cell populations.

46: Aequorea victoria’s secrets
more details view paper

Posted to bioRxiv 19 Jun 2019

Aequorea victoria’s secrets
1,208 downloads biochemistry

Talley Lambert, Hadrien Depernet, Guillaume Gotthard, Darrin T Schultz, lsabelle Navizet

Using mRNA-Seq and de novo transcriptome assembly, we identified, cloned and characterized nine previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from avGFP. Among these FPs are the brightest GFP homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including two that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.

47: Improved CUT&RUN chromatin profiling and analysis tools
more details view paper

Posted to bioRxiv 06 Mar 2019

Improved CUT&RUN chromatin profiling and analysis tools
1,207 downloads molecular biology

Michael P. Meers, Terri D Bryson, Steven Henikoff

We previously described a novel alternative to Chromatin Immunoprecipitation, Cleavage Under Targets & Release Using Nuclease (CUT&RUN), in which unfixed permeabilized cells are incubated with antibody, followed by binding of a Protein A-Micrococcal Nuclease (pA/MNase) fusion protein (1). Upon activation of tethered MNase, the bound complex is excised and released into the supernatant for DNA extraction and sequencing. Here we introduce four enhancements to CUT&RUN: 1) a hybrid Protein A-Protein G-MNase construct that expands antibody compatibility and simplifies purification; 2) a modified digestion protocol that inhibits premature release of the nuclease-bound complex; 3) a calibration strategy based on carry-over of E. coli DNA introduced with the fusion protein; and 4) a novel peak-calling strategy customized for the low-background profiles obtained using CUT&RUN. These new features, coupled with the previously described low-cost, high efficiency, high reproducibility and high- throughput capability of CUT&RUN make it the method of choice for routine epigenomic profiling.

48: Polygenic and clinical risk scores and their impact on age at onset of cardiometabolic diseases and common cancers
more details view paper

Posted to bioRxiv 06 Aug 2019

Polygenic and clinical risk scores and their impact on age at onset of cardiometabolic diseases and common cancers
1,203 downloads genomics

Nina J Mars, Jukka T. Koskela, Pietari Ripatti, Tuomo T.J. Kiiskinen, Aki S Havulinna, Joni V. Lindbohm, Ari Ahola-Olli, Mitja Kurki, Juha Karjalainen, Priit Palta, FinnGen, Benjamin M Neale, Mark Daly, Veikko Salomaa, Aarno Palotie, Elisabeth Widen, Samuli Ripatti

Background: Polygenic risk scores (PRS) have shown promise in predicting susceptibility to common diseases. However, the extent to which PRS and clinical risk factors act jointly and identify high-risk individuals for early onset of disease is unknown. Methods: We used large-scale biobank data (the FinnGen study; n=135,300), with up to 46 years of prospective follow-up, and the FINRISK study with standardized clinical risk factor measurements to build genome-wide PRSs with >6M variants for coronary heart disease (CHD), type 2 diabetes (T2D), atrial fibrillation (AF), and breast and prostate cancer. We evaluated their associations with first disease events, age at disease onset, and impact together with routinely used clinical risk scores for predicting future disease. Results: Compared to the 20-80th percentiles, a PRS in the top 2.5% translated into hazard ratios (HRs) for incident disease ranging from 2.03 to 4.28 (p-values 1.96x10-59 to <1.00x10-100) and the bottom 2.5% into HRs ranging from 0.20 to 0.61. The estimated difference in age at disease onset between top and bottom 2.5% of PRSs was 6 to 13 years. Among early-onset cases, 21.3-32.9% had a PRS in the highest decile and in CHD and AF. Conclusions: The properties of PRS were similar in all five diseases. PRS identified a considerable proportion early-onset cases, and for all ages the performance of PRS was comparable to established clinical risk scores. These findings warrant further clinical studies on application of polygenic risk information for stratified screening or for guiding lifestyle and preventive medical interventions.

49: The Spatio-Temporal Control of Zygotic Genome Activation
more details view paper

Posted to bioRxiv 06 Dec 2018

The Spatio-Temporal Control of Zygotic Genome Activation
1,200 downloads developmental biology

George Gentsch, Nick D L Owens, James C Smith

One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the mid-blastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation, and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal and BMP signaling together generate most of the spatio-temporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.

50: The influence of visual cortex on perception is modulated by behavioural state
more details view paper

Posted to bioRxiv 17 Jul 2019

The influence of visual cortex on perception is modulated by behavioural state
1,184 downloads neuroscience

Lloyd E Russell, Zidan Yang, Pei Lynn Tan, Mehmet Fisek, Adam M Packer, Henry WP Dalgleish, Selmaan Chettih, Christopher D Harvey, Michael Hausser

Our understanding of the link between neural activity and perception remains incomplete. Microstimulation and optogenetic experiments have shown that manipulating cortical activity can influence sensory-guided behaviour or elicit artificial percepts. And yet, some perceptual tasks can still be solved when sensory cortex is silenced or removed, suggesting that cortical activity may not always be essential. Reconciling these findings, and providing a quantitative framework linking cortical activity and behaviour, requires knowledge of the identity of the cells being activated during the behaviour, the engagement of the local and downstream networks, and the cortical and behavioural state. Here, we performed two-photon population calcium imaging in L2/3 primary visual cortex (V1) of headfixed mice performing a visual detection task while simultaneously activating specific groups of neurons using targeted two-photon optogenetics during low contrast visual stimulation. Only activation of groups of cells with similar tuning to the relevant visual stimulus led to a measurable bias of detection behaviour. Targeted photostimulation revealed signatures of centre-surround, predominantly inhibitory and like-to-like connectivity motifs in the local network which shaped the visual stimulus representation and partially explained the change in stimulus detectability. Moreover, the behavioural effects depended on overall performance: when the task was challenging for the mouse, V1 activity was more closely linked to performance, and cortical stimulation boosted perception. In contrast, when the task was easy, V1 activity was less informative about performance and cortical stimulation suppressed stimulus detection. Altogether, we find that both the selective routing of information through functionally specific circuits, and the prevailing cortical state, make similarly large contributions to explaining the behavioural response to photostimulation. Our results thus help to reconcile contradictory findings about the involvement of primary sensory cortex in behavioural tasks, suggesting that the influence of cortical activity on behaviour is dynamically reassigned depending on the demands of the task.

51: HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly.
more details view paper

Posted to bioRxiv 21 Feb 2019

HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly.
1,181 downloads biophysics

Cyril Favard, Jakub Chojnacki, Peggy Merida, Naresh Yandrapalli, Johnson Mak, Christian Eggeling, Delphine Muriaux

HIV-1 Gag protein self-assembles at the plasma membrane of infected cells for viral particle formation. Gag targets lipids, mainly the phosphatidylinositol (4,5) bisphosphate, at the inner leaflet of this membrane. Here, we address the question whether Gag is able to trap specifically PI(4,5)P2 or other lipids during HIV-1 assembly in the host CD4+ T lymphocytes. Lipid dynamics within and away from HIV-1 assembly sites was determined using super-resolution STED microscopy coupled with scanning Fluorescence Correlation Spectroscopy in living T cells. Analysis of HIV-1 infected cells revealed that, upon assembly, HIV-1 is able to specifically trap PI(4,5)P2, and cholesterol, but not phosphatidylethanolamine or sphingomyelin. Furthermore, our data show that Gag is the main driving force to restrict PI(4,5)P2 and cholesterol mobility at the cell plasma membrane. This is first direct evidence showing that HIV-1 creates its own specific lipid environment by selectively recruiting PI(4,5)P2 and cholesterol, as a membrane nano-platform for virus assembly.

52: Altering the temporal regulation of one transcription factor drives sensory trade-offs
more details view paper

Posted to bioRxiv 15 Jun 2018

Altering the temporal regulation of one transcription factor drives sensory trade-offs
1,178 downloads developmental biology

Ariane Ramaekers, Simon Weinberger, Annelies Claeys, Martin Kapun, Jiekun Yan, Reinhard Wolf, Thomas Flatt, Erich Buchner, Bassem A Hassan

Size trade-offs of visual versus olfactory organs is a pervasive feature of animal evolution. Comparing Drosophila species, we find that larger eyes correlate with smaller antennae, where olfactory organs reside, and narrower faces. We demonstrate that this trade-off arises through differential subdivision of the head primordium into visual versus non-visual fields. Specification of the visual field requires a highly-conserved eye development gene called eyeless in flies and Pax6 in humans. We discover that changes in the temporal regulation of eyeless expression during development is a conserved mechanism for sensory trade-offs within and between Drosophila species. We identify a natural single nucleotide polymorphism in the cis-regulatory region of eyeless that is sufficient to alter its temporal regulation and eye size. Because Pax6 is a conserved regulator of sensory placode subdivision, we propose that alterations in the mutual repression between sensory territories is a conserved mechanism for sensory trade-offs in animals.

53: Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping
more details view paper

Posted to bioRxiv 14 Jul 2019

Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping
1,161 downloads genomics

Jordan A Ramilowski, Chi Wai Yip, Saumya Agrawal, Jen-Chien Chang, Yari Ciani, Ivan V Kulakovskiy, Mickael Mendez, Jasmine Li Ching Ooi, Andreas Petri, Leonie Roos, Jessica Severin, Kayoko Yasuzawa, John F Ouyang, Nick Parkinson, Imad Abugessaisa, Altuna Akalin, Ivan Antonov, Erik Arner, Alessandro Bonetti, Hidemasa Bono, Beatrice Borsari, Frank Brombacher, Carlo Cannistraci, Christopher JF CAMERON, Ryan Cardenas, Melissa Cardon, Howard Chang, Josée Dostie, Luca Ducoli, Alexander Favorov, Alexandre Fort, Diego Garrido, Noa Gil, Juliette Gimenez, Reto Guler, Lusy Handoko, Jayson Harshbarger, Akira Hasegawa, Yuki Hasegawa, Kosuke Hashimoto, Norihito Hayatsu, Peter Heutink, Tetsuro Hirose, Eddie L. Imada, Masayoshi Itoh, Bogumil Kaczkowski, Aditi Kanhere, Emily Kawabata, Hideya Kawaji, Tsugumi Kawashima, Tom Kelly, Miki Kojima, Naoto Kondo, Haruhiko Koseki, Tsukasa Kouno, Anton Kratz, Mariola Kurowska-Stolarska, Andrew Tae-Jun Kwon, Jeffrey Leek, Andreas Lennartsson, Marina Lizio, Fernando Lopez, Joachim Luginbuehl, Shiori Maeda, Vsevolod Makeev, Luigi Marchionni, Yulia A. Medvedeva, Aki Minoda, Ferenc Müller, Manuel Munoz Aguirre, Mitsuyoshi Murata, Hiromi Nishiyori, Kazuhiro Nitta, Shuhei Noguchi, Yukihiko Noro, Ramil Nurtdinov, Yasushi Okazaki, Valerio Orlando, Denis Paquette, Callum Parr, Owen J.L. Rackham, Patrizia Rizzu, Diego Fernando Sanchez, Albin Sandelin, Pillay Sanjana, Colin A.M. Semple, Harshita Sharma, Youtaro Shibayama, Divya Sivaraman, Takahiro Suzuki, Susanne Szumowski, Michihira Tagami, Martin S Taylor, Chikashi Terao, Malte Thodberg, Supat Thongjuea, Vidisha Tripathi, Igor Ulitsky, Roberto Verardo, Ilya Vorontsov, Chinatsu Yamamoto, Robert S. Young, John Kenneth Baillie, Alistair R.R. Forrest, Roderic Guigó, Michael M. Hoffman, Chung-Chau Hon, Takeya Kasukawa, Sakari Kauppinen, Juha Kere, Boris Lenhard, Claudio Schneider, Harukazu Suzuki, Ken Yagi, Michiel de Hoon, Jay W Shin, Piero Carninci

Long non-coding RNAs (lncRNAs) constitute the majority of transcripts in mammalian genomes and yet, their functions remain largely unknown. We systematically suppressed 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). The resulting transcriptomic profiles recapitulated the observed cellular phenotypes, yielding specific roles for over 40% of analyzed lncRNAs in regulating distinct biological pathways, transcriptional machinery, alternative promoter activity and architecture usage. Overall, combining cellular and molecular profiling provided a powerful approach to unravel the distinct functions of lncRNAs, which we highlight with specific functional roles for ZNF213-AS1 and lnc-KHDC3L-2.

54: Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain
more details view paper

Posted to bioRxiv 06 Aug 2019

Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain
1,139 downloads neuroscience

Julia Marschallinger, Tal Iram, Macy Zardeneta, Song Lee, Benoit Lehallier, Michael Haney, John Pluvinage, Vidhu Mathur, Oliver Hahn, David Morgens, Justin Kim, Julia Tevini, Thomas Felder, Heimo Wolinski, Carolyn Bertozzi, Michael Bassik, Ludwig Aigner, Tony Wyss-Coray

Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call lipid droplet-accumulating microglia (LAM), are defective in phagocytosis, produce high levels of reactive oxygen species, and secrete pro-inflammatory cytokines. RNA sequencing analysis of LAM revealed a transcriptional profile driven by innate inflammation distinct from previously reported microglial states. An unbiased CRISPR-Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin, are causes of autosomal dominant forms of human neurodegenerative diseases. We thus propose that LAM contribute to age-related and genetic forms of neurodegeneration.

55: Modular and efficient pre-processing of single-cell RNA-seq
more details view paper

Posted to bioRxiv 17 Jun 2019

Modular and efficient pre-processing of single-cell RNA-seq
1,137 downloads bioinformatics

Páll Melsted, A. Sina Booeshaghi, Fan Gao, Eduardo da Veiga Beltrame, Lambda Lu, Kristján Eldjárn Hjorleifsson, Jase Gehring, Lior Pachter

Analysis of single-cell RNA-seq data begins with pre-processing of sequencing reads to generate count matrices. We investigate algorithm choices for the challenges of pre-processing, and describe a workflow that balances efficiency and accuracy. Our workflow is based on the kallisto (<https://pachterlab.github.io/kallisto/>) and bustools (<https://bustools.github.io/>) programs, and is near-optimal in speed and memory. The workflow is modular, and we demonstrate its flexibility by showing how it can be used for RNA velocity analyses. Documentation and tutorials for using the kallisto | bus workflow are available at <https://www.kallistobus.tools/>.

56: Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization
more details view paper

Posted to bioRxiv 30 Jul 2019

Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization
1,128 downloads

Chiara Baccin, Jude Al-Sabah, Lars Velten, Patrick M. Helbling, Florian Gruenschlaeger, Pablo Hernandez-Malmierca, Cesar Nombela-Arrieta, Lars M Steinmetz, Andreas Trumpp, Simon Haas

The bone marrow (BM) constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular composition and the spatial organization into distinct niches remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular and cellular composition of the endosteal, sinusoidal, and arteriolar BM niches. This allowed us to transcriptionally profile all major BM resident cell types, determine their localization, and clarify the cellular and spatial sources of key growth factors and cytokines. Our data demonstrate that previously unrecognized Cxcl12-abundant reticular (CAR) cell subsets (i.e. Adipo- and Osteo- CAR cells) differentially localize to sinusoidal or arteriolar surfaces, locally act as professional cytokine secreting cells, and thereby establish distinct peri-vascular micro-niches. Importantly, we also demonstrate that the 3-dimensional organization of the BM can be accurately inferred from single-cell gene expression data using the newly developed RNA-Magnet algorithm. Together, our study reveals the cellular and spatial organization of BM niches, and offers a novel strategy to dissect the complex organization of whole organs in a systematic manner.

57: An association between sexes of successive siblings in the data from Demographic and Health Survey program
more details view paper

Posted to bioRxiv 12 Nov 2015

An association between sexes of successive siblings in the data from Demographic and Health Survey program
1,120 downloads physiology

Mikhail Monakhov

The prediction of future child's sex is a question of keen public interest. The probability of having a child of either sex is close to 50%, although multiple factors may slightly change this value. Some demographic studies suggested that sex determination can be influenced by previous pregnancies, although this hypothesis was not commonly accepted. This paper explores the correlations between siblings' sexes using data from the Demographic and Health Survey program. In the sample of about 2,214,601 women (7,985,855 children), the frequencies of sibships with multiple siblings of the same sex were significantly higher than can be expected by chance. A formal modelling demonstrated that sexes of the children were dependent on three kinds of sex ratio variation: a variation between families (Lexian), a variation within a family (Poisson) and a variation contingent upon the sex of preceding sibling (Markovian). There was a positive correlation between the sexes of successive siblings (coefficient = 0.067, p < 0.001), i.e. a child was more likely to be of the same sex as its preceding sibling. This correlation could be caused by secondary sex ratio adjustment in utero since the effect was decreasing with the length of birth-to-birth interval, and the birth-to-birth interval was longer for siblings with unlike sex.

58: Compartment-dependent chromatin interaction dynamics revealed by liquid chromatin Hi-C
more details view paper

Posted to bioRxiv 16 Jul 2019

Compartment-dependent chromatin interaction dynamics revealed by liquid chromatin Hi-C
1,108 downloads genomics

Houda Belaghzal, Tyler Borrman, Andrew D Stephens, Denis L Lafontaine, Sergey V Venev, John F. Marko, Zhiping Weng, Job Dekker

Chromosomes are folded so that active and inactive chromatin domains are spatially segregated. Compartmentalization is thought to occur through polymer phase/microphase separation mediated by interactions between loci of similar type. The nature and dynamics of these interactions are not known. We developed liquid chromatin Hi-C to map the stability of associations between loci. Before fixation and Hi-C, chromosomes are fragmented removing the strong polymeric constraint to enable detection of intrinsic locus-locus interaction stabilities. Compartmentalization is stable when fragments are over 10-25 kb. Fragmenting chromatin into pieces smaller than 6 kb leads to gradual loss of genome organization. Dissolution kinetics of chromatin interactions vary for different chromatin domains. Lamin-associated domains are most stable, while interactions among speckle and polycomb-associated loci are more dynamic. Cohesin-mediated loops dissolve after fragmentation, possibly because cohesin rings slide off nearby DNA ends. Liquid chromatin Hi-C provides a genome-wide view of chromosome interaction dynamics.

59: Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences
more details view paper

Posted to bioRxiv 29 Apr 2019

Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences
1,107 downloads synthetic biology

Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, Rob Fergus

In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In biology, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Learning the natural distribution of evolutionary protein sequence variation is a logical step toward predictive and generative modeling for biology. To this end we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million sequences spanning evolutionary diversity. The resulting model maps raw sequences to representations of biological properties without labels or prior domain knowledge. The learned representation space organizes sequences at multiple levels of biological granularity from the biochemical to proteomic levels. Learning recovers information about protein structure: secondary structure and residue-residue contacts can be extracted by linear projections from learned representations. With small amounts of labeled data, the ability to identify tertiary contacts is further improved. Learning on full sequence diversity rather than individual protein families increases recoverable information about secondary structure. We show the networks generalize by adapting them to variant activity prediction from sequences only, with results that are comparable to a state-of-the-art variant predictor that uses evolutionary and structurally derived features.

60: Systems-level immunomonitoring using self-sampled capillary blood
more details view paper

Posted to bioRxiv 08 Jul 2019

Systems-level immunomonitoring using self-sampled capillary blood
1,086 downloads immunology

Vijay Sai Josyula, Tadepally Lakshmikanth, Jaromir Mikes, Yang Chen, Petter Brodin

Comprehensive profiling of the human immune system in patients with cancer, autoimmune disease and during infections are providing valuable information that help us understand disease states and discriminate productive from inefficient immune responses and identify possible targets for immune modulation. Recent technical advances now allow for all immune cell populations and hundreds of plasma proteins to be detected using small volume blood samples. To democratize such systems-immunological analyses, further simplified blood sampling and preservation will be important. Here we describe that blood obtained via a nearly painless self-sampling device of 100 microliter of capillary blood that is preserved and frozen, can simplify systems-level immunomonitoring studies.

Previous page 1 2 3 4 5 6 7 . . . 2815 Next page

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News