Rxivist logo

Rxivist combines biology preprints from bioRxiv and medRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 137,817 papers from 586,895 authors.

Most downloaded biology preprints, all time

in category health economics

179 results found. For more information, click each entry to expand.

1: Examining Unit Costs for COVID-19 Case Management in Kenya
more details view paper

Posted 13 Oct 2020

Examining Unit Costs for COVID-19 Case Management in Kenya
13,970 downloads medRxiv health economics

Edwine Barasa, Angela Kairu, Wangari Nganga, Marybeth Maritim, Vincent Were, Samuel Akech, Mercy Mwangangi

IntroductionCase management for COVID-19 patients is one of key interventions in country responses to the pandemic. Countries need information on the costs of case management to inform resource mobilization, planning and budgeting, purchasing arrangements, and assessments of the cost-effectiveness of interventions. We estimated unit costs for COVID-19 case management for patients with asymptomatic, mild to moderate, severe, and critical COVID-19 disease in Kenya. MethodsWe estimated per patient per day unit costs of COVID-19 case management for patients that are asymptomatic and those that have mild to moderate, severe, and critical symptoms. For asymptomatic and mild to moderate patients, we estimated unit costs for home-based care and institutional (hospitals and isolation centers). We used an ingredients approach, adopted a health system perspective and patient episode of care as our time horizon. We obtained data on inputs and their quantities from COVID-19 case management guidelines, home based care guidelines, and human resource guidelines, and augmented this with data provided by three public covid-19 treatment hospitals in Kenya. We obtained input prices for services from a recent costing survey of 20 hospitals in Kenya and for pharmaceuticals, non-pharmaceuticals, devices and equipment from market price databases for Kenya. ResultsPer day per patient unit cost for asymptomatic patients and patients with mild to moderate COVID-19 disease under home based care are KES 1,993.01 (USD 18.89) and 1995.17 (USD 18.991) respectively. When these patients are managed in an isolation center of hospital, the same unit costs for asymptomatic patients and patients with mild to moderate disease are 7,415.28 (USD 70.29) and 7,417.44 (USD 70.31) respectively. Per day unit costs for patients with severe COVID-19 disease managed in general hospital wards and those with critical COVID-19 disease admitted in intensive care units are 12,570.75 (USD 119.16) and 59,369.42 (USD 562.79). ConclusionCOVID-19 case management costs are substantial. Unit costs for asymptomatic and mild to moderate COVID-19 patients in home-based care is 4-fold lower compared institutional care of the same patients. Kenya will not only need to mobilize substantial resources to finance COVID-19 case management but also explore additional service delivery adaptations that will reduce unit costs.

2: They stumble that run fast: the economic and COVID-19 transmission impacts of reopening industries in the US
more details view paper

Posted 12 Jun 2020

They stumble that run fast: the economic and COVID-19 transmission impacts of reopening industries in the US
6,829 downloads medRxiv health economics

Marita Zimmermann, Amy E Benefield, Benjamin M. Althouse

COVID-19 has laid bare the United States economically and epidemiologically. Decisions must be made as how and when to reopen industries. Here we quantify economic and health risk tradeoffs of reopening by industry for each state in the US. To estimate total economic impact, we summed income loss due to unemployment and profit loss. We assess transmission risk by: (1) workplace size, (2) human interactions, (3) inability to work from home, and (4) industry size. We found that the industry with the highest estimated economic impact from COVID-19 was manufacturing in 40 states; the industry with the largest transmission risk index was accommodation and food services in 41 states, and the industry with the highest economic impact per unit of transmission risk, interpreted as the value of reopening, was manufacturing in 37 states. Researchers and decision makers must work together to consider both health and economics when making tough decisions.

3: Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S.
more details view paper

Posted 29 May 2020

Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S.
6,653 downloads medRxiv health economics

Victor Chernozhukov, Hiroyuki Kasahara, Paul Schrimpf

The paper evaluates the dynamic impact of various policies adopted by US states on the growth rates of confirmed Covid-19 cases and deaths as well as social distancing behavior measured by Google Mobility Reports, where we take into consideration people's voluntarily behavioral response to new information of transmission risks in a causal structural model framework. Our analysis finds that both policies and information on transmission risks are important determinants of Covid-19 cases and deaths and shows that a change in policies explains a large fraction of observed changes in social distancing behavior. Our main counterfactual experiments suggest that nationally mandating face masks for employees early in the pandemic could have reduced the weekly growth rate of cases and deaths by more than 10 percentage points in late April and could have led to as much as 19 to 47 percent less deaths nationally by the end of May, which roughly translates into 19 to 47 thousand saved lives. We also find that, without stay-at-home orders, cases would have been larger by 6 to 63 percent and without business closures, cases would have been larger by 17 to 78 percent. We find considerable uncertainty over the effects of school closures due to lack of cross-sectional variation; we could not robustly rule out either large or small effects. Overall, substantial declines in growth rates are attributable to private behavioral response, but policies played an important role as well. We also carry out sensitivity analyses to find neighborhoods of the models under which the results hold robustly: the results on mask policies appear to be much more robust than the results on business closures and stay-at-home orders. Finally, we stress that our study is observational and therefore should be interpreted with great caution. From a completely agnostic point of view, our findings uncover predictive effects (association) of observed policies and behavioral changes on future health outcomes, controlling for informational and other confounding variables.

4: COVID-19, City Lockdown, and Air Pollution: Evidence from China
more details view paper

Posted 01 Apr 2020

COVID-19, City Lockdown, and Air Pollution: Evidence from China
5,901 downloads medRxiv health economics

Guojun He, Yuhang Pan, Takanao Tanaka

The rapid spread of COVID-19 is a global public health challenge. To prevent the escalation of its transmission, China locked down one-third of its cities and strictly restricted human mobility and economic activities. Using timely and comprehensive air quality data in China, we show that these counter-COVID-19 measures led to remarkable improvement in air quality. Within weeks, the Air Quality Index and PM2.5 concentrations were brought down by 25%. The effects are larger in colder, richer, and more industrialized cities. We estimate that such improvement would avert 24,000 to 36,000 premature deaths from air pollution on a monthly basis.

5: The Association of Opening K-12 Schools and Colleges with the Spread of COVID-19 in the United States: County-Level Panel Data Analysis
more details view paper

Posted 23 Feb 2021

The Association of Opening K-12 Schools and Colleges with the Spread of COVID-19 in the United States: County-Level Panel Data Analysis
4,475 downloads medRxiv health economics

Victor Chernozhukov, Hiroyuki Kasahara, Paul Schrimpf

AO_SCPLOWBSTRACTC_SCPLOWThis paper empirically examines how the opening of K-12 schools and colleges is associated with the spread of COVID-19 using county-level panel data in the United States. Using data on foot traffic and K-12 school opening plans, we analyze how an increase in visits to schools and opening schools with different teaching methods (in-person, hybrid, and remote) is related to the 2-weeks forward growth rate of confirmed COVID-19 cases. Our debiased panel data regression analysis with a set of county dummies, interactions of state and week dummies, and other controls shows that an increase in visits to both K-12 schools and colleges is associated with a subsequent increase in case growth rates. The estimates indicate that fully opening K-12 schools with in-person learning is associated with a 5 (SE = 2) percentage points increase in the growth rate of cases. We also find that the positive association of K-12 school visits or in-person school openings with case growth is stronger for counties that do not require staff to wear masks at schools. These results have a causal interpretation in a structural model with unobserved county and time confounders. Sensitivity analysis shows that the baseline results are robust to timing assumptions and alternative specifications.

6: Projecting the Spread of COVID19 for Germany
more details view paper

Posted 30 Mar 2020

Projecting the Spread of COVID19 for Germany
3,690 downloads medRxiv health economics

Jean Roch Donsimoni, René Glawion, Bodo Plachter, Klaus Waelde

We model the evolution of the number of individuals that are reported to be sick with COVID-19 in Germany. Our theoretical framework builds on a continuous time Markov chain with four states: healthy without infection, sick, healthy after recovery or after infection but without symptoms and dead. Our quantitative solution matches the number of sick individuals up to the most recent observation and ends with a share of sick individuals following from infection rates and sickness probabilities. We employ this framework to study inter alia the expected peak of the number of sick individuals in a scenario without public regulation of social contacts. We also study the effects of public regulations. For all scenarios we report the expected end of the CoV-2 epidemic. We have four general findings: First, current epidemiological thinking implies that the long-run effects of the epidemic only depend on the aggregate long-run infection rate and on the individual risk to turn sick after an infection. Any measures by individuals and the public therefore only influence the dynamics of spread of CoV-2. Second, predictions about the duration and level of the epidemic must strongly distinguish between the officially reported numbers (Robert Koch Institut, RKI) and actual numbers of sick individuals. Third, given the current (scarce) medical knowledge about long-run infection rate and individual risks to turn sick, any prediction on the length (duration in months) and strength (e.g. maximum numbers of sick individuals on a given day) is subject to a lot of uncertainty. Our predictions therefore offer robustness analyses that provide ranges on how long the epidemic will last and how strong it will be. Fourth, public interventions that are already in place and that are being discussed can lead to more and less severe outcomes of the epidemic. If an intervention takes place too early, the epidemic can actually be stronger than with an intervention that starts later. Interventions should therefore be contingent on current infection rates in regions or countries. Concerning predictions about COVID-19 in Germany, we find that the long-run number of sick individuals (that are reported to the RKI), once the epidemic is over, will lie between 500 thousand and 5 million individuals. While this seems to be an absurd large range for a precise projection, this reflects the uncertainty about the long-run infection rate in Germany. If we assume that Germany will follow the good scenario of Hubei (and we are even a bit more conservative given discussions about data quality), we will end up with 500 thousand sick individuals over the entire epidemic. If by contrast we believe (as many argue) that once the epidemic is over 70% of the population will have been infected (and thereby immune), we will end up at 5 million cases. Defining the end of the epidemic by less than 100 newly reported sick individuals per day, we find a large variation depending on the effectiveness of governmental pleas and regulations to reduce social contacts. An epidemic that is not influenced by public health measures would end mid June 2020. With public health measures lasting for few weeks, the end is delayed by around one month or two. The advantage of the delay, however, is to reduce the peak number of individuals that are simultaneously sick. When we believe in long-run infection rates of 70%, this number is equally high for all scenarios we went through and well above 1 million. When we can hope for the Hubei-scenario, the maximum number of sick individuals will be around 200 thousand "only". Whatever value of the range of long-run infection rates we want to assume, the epidemic will last at least until June, with extensive and potentially future public health measures, it will last until July. In the worst case, it will last until end of August. We emphasize that all projections are subject to uncertainty and permanent monitoring of observed incidences are taken into account to update the projection. The most recent projections are available at https://www.macro.economics.unimainz.de/corona-blog/.

7: Do Lockdowns Bring about Additional Mortality Benefits or Costs? Evidence based on Death Records from 300 Million Chinese People
more details view paper

Posted 01 Sep 2020

Do Lockdowns Bring about Additional Mortality Benefits or Costs? Evidence based on Death Records from 300 Million Chinese People
2,467 downloads medRxiv health economics

Jinlei Qi, Dandan Zhang, Xiang Zhang, Peng Yin, Jianmei Liu, Yuhang Pan, Tanakao Takana, Peiyu Xie, Zhaoguang Wang, Shuocen Liu, George Fu Gao, Guojun He, Maigeng Zhou

Objectives: To estimate the short-term effect of stringent lockdown policies on non-COVID-19 mortality and explore the heterogeneous impacts of lockdowns in China after the COVID-19 outbreak. Design Employing a difference-in-differences method. Setting Using comprehensive death records covering around 300 million Chinese people, we estimate the impacts of city and community lockdowns on non-COVID-19 mortality outside of Wuhan. Participants: 44,548 deaths recorded in 602 counties or districts by the Disease Surveillance Point System of the Chinese Center for Disease Control and Prevention from 1 January 2020 to14 March 2020. Results We find that lockdowns reduced the number of non-COVID-19 deaths by 4.9% (cardiovascular deaths by 6.2%, injuries by 9.2%, and non-COVID-19 pneumonia deaths by 14.3%). A back-of-the-envelope calculation shows that more than 32,000 lives could have been saved from non-COVID-19 diseases/causes during the 40 days of the lockdown on which we focus. Main outcome measures: Weekly numbers of deaths from all causes without COVID-19, cardiovascular diseases, injuries, pneumonia, neoplasms, chronic respiratory diseases, and other causes were used to estimate the associations between lockdown policies and mortality. Conclusions: The results suggest that the rapid and strict virus countermeasures not only effectively controlled the spread of COVID-19 but also brought about unintended short-term public health benefits. The health benefits are likely driven by significant reductions in air pollution, traffic, and human interactions during the lockdown period. These findings can help better inform policymakers around the world about the benefits and costs of lockdowns policies in dealing with the COVID-19 pandemic.

8: Human Mobility Restrictions and the Spread of the Novel Coronavirus (2019-nCoV) in China
more details view paper

Posted 26 Mar 2020

Human Mobility Restrictions and the Spread of the Novel Coronavirus (2019-nCoV) in China
2,417 downloads medRxiv health economics

Hanming Fang, Long Wang, Yang Yang

We quantify the causal impact of human mobility restrictions, particularly the lockdown of the city of Wuhan on January 23, 2020, on the containment and delay of the spread of the Novel Coronavirus (2019-nCoV). We employ a set of difference-in-differences (DID) estimations to disentangle the lockdown effect on human mobility reductions from other confounding effects including panic effect, virus effect, and the Spring Festival effect. We find that the lockdown of Wuhan reduced inflow into Wuhan by 76.64%, outflows from Wuhan by 56.35%, and within-Wuhan movements by 54.15%. We also estimate the dynamic effects of up to 22 lagged population inflows from Wuhan and other Hubei cities, the epicenter of the 2019-nCoV outbreak, on the destination cities new infection cases. We find, using simulations with these estimates, that the lockdown of the city of Wuhan on January 23, 2020 contributed significantly to reducing the total infection cases outside of Wuhan, even with the social distancing measures later imposed by other cities. We find that the COVID-19 cases would be 64.81% higher in the 347 Chinese cities outside Hubei province, and 52.64% higher in the 16 non-Wuhan cities inside Hubei, in the counterfactual world in which the city of Wuhan were not locked down from January 23, 2020. We also find that there were substantial undocumented infection cases in the early days of the 2019-nCoV outbreak in Wuhan and other cities of Hubei province, but over time, the gap between the officially reported cases and our estimated "actual" cases narrows significantly. We also find evidence that enhanced social distancing policies in the 63 Chinese cities outside Hubei province are effective in reducing the impact of population inflows from the epi-center cities in Hubei province on the spread of 2019-nCoV virus in the destination cities elsewhere. JEL CodesI18, I10.

9: Face Masks, Public Policies and Slowing the Spread of COVID-19: Evidence from Canada
more details view paper

Posted 25 Sep 2020

Face Masks, Public Policies and Slowing the Spread of COVID-19: Evidence from Canada
2,379 downloads medRxiv health economics

Alexander Karaivanov, Shih En Lu, Hitoshi Shigeoka, Cong Chen, Stephanie Pamplona

We estimate the impact of mask mandates and other non-pharmaceutical interventions (NPI) on COVID-19 case growth in Canada, including regulations on businesses and gatherings, school closures, travel and self-isolation, and long-term care homes. We partially account for behavioral responses using Google mobility data. Our identification approach exploits variation in the timing of indoor face mask mandates staggered over two months in the 34 public health regions in Ontario, Canadas most populous province. We find that, in the first few weeks after implementation, mask mandates are associated with a reduction of 25 percent in the weekly number of new COVID-19 cases. Additional analysis with province-level data provides corroborating evidence. Counterfactual policy simulations suggest that mandating indoor masks nationwide in early July could have reduced the weekly number of new cases in Canada by 25 to 40 percent in mid-August, which translates into 700 to 1,100 fewer cases per week. JEL codesI18, I12, C23

10: The socio-economic determinants of the coronavirus disease (COVID-19) pandemic
more details view paper

Posted 17 Apr 2020

The socio-economic determinants of the coronavirus disease (COVID-19) pandemic
2,271 downloads medRxiv health economics

Viktor Stojkoski, Zoran Utkovski, Petar Jolakoski, Dragan Tevdovski, Ljupco Kocarev

The magnitude of the coronavirus disease (COVID-19) pandemic has an enormous impact on the social life and the economic activities in almost every country in the world. Besides the biological and epidemiological factors, a multitude of social and economic criteria also govern the extent of the coronavirus disease spread in the population. Consequently, there is an active debate regarding the critical socio-economic determinants that contribute to the resulting pandemic. In this paper, we contribute towards the resolution of the debate by leveraging Bayesian model averaging techniques and country level data to investigate the potential of 35 determinants, describing a diverse set of socio-economic characteristics, in explaining the coronavirus pandemic outcome.

11: Estimating Probabilities of Success of Clinical Trials for Vaccines and Other Anti-Infective Therapeutics
more details view paper

Posted 14 Apr 2020

Estimating Probabilities of Success of Clinical Trials for Vaccines and Other Anti-Infective Therapeutics
2,097 downloads medRxiv health economics

Chi Heem Wong, Kien Wei Siah, Andrew W. Lo

A key driver in biopharmaceutical investment decisions is the probability of success of a drug development program. We estimate the probabilities of success (PoS) of clinical trials for vaccines and other anti-infective therapeutics using 43,414 unique triplets of clinical trial, drug, and disease between January 1, 2000, and January 7, 2020, yielding 2,544 vaccine programs and 6,829 non-vaccine programs targeting infectious diseases. The overall estimated PoS for an industry-sponsored vaccine program is 39.6%, and 16.3% for an industry-sponsored anti-infective therapeutic. Among industry-sponsored vaccines programs, only 12 out of 27 disease categories have seen at least one approval, with the most successful being against monkeypox (100%), rotavirus (78.7%), and Japanese encephalitis (67.6%). The three infectious diseases with the highest PoS for industry-sponsored non-vaccine therapeutics are smallpox (100%), CMV (31.8%), and onychomycosis (29.8%). Non-industry-sponsored vaccine and non-vaccine development programs have lower overall PoSs: 6.8% and 8.2%, respectively. Viruses involved in recent outbreaks---MERS, SARS, Ebola, Zika---have had a combined total of only 45 non-vaccine development programs initiated over the past two decades, and no approved therapy to date (Note: our data was obtained just before the COVID-19 outbreak and do not contain information about the programs targeting this disease.) These estimates offer guidance both to biopharma investors as well as to policymakers seeking to identify areas most likely to be undeserved by private-sector engagement and in need of public-sector support.

12: Does TB Vaccination Reduce COVID-19 Infection?: No Evidence from a Regression Discontinuity Analysis
more details view paper

Posted 22 Apr 2020

Does TB Vaccination Reduce COVID-19 Infection?: No Evidence from a Regression Discontinuity Analysis
2,007 downloads medRxiv health economics

Masao Fukui, Kohei Kawaguchi, Hiroaki Matsuura

In the middle of the global COVID-19 pandemic, the BCG hypothesis, the prevalence and severity of the COVID-19 outbreak seems to be correlated with whether a country has a universal coverage of Bacillus-Calmette-Guerin (BCG), a vaccine for tuberculosis disease (TB), has emerged and attracted the attention of scientific community and media outlets. However, all existing claims are based on cross-country correlations that do not exclude the possibility of spurious correlation. We merged country-age-level case statistics with the start/termination years of BCG vaccination policy and conducted a regression discontinuity and difference-in-difference analysis. The results do not support the BCG hypothesis.

13: A Noncooperative Game Analysis for Controlling COVID-19 Outbreak
more details view paper

Posted 26 May 2020

A Noncooperative Game Analysis for Controlling COVID-19 Outbreak
2,003 downloads medRxiv health economics

Anupam Kumar Bairagi, Mehedi Masud, Do Hyeon Kim, Md. Shirajum Munir, Abdullah Al Nahid, Sarder Fakhrul Abedin, Kazi Masudul Alam, Sujit Biswas, Sultan S Alshamrani, Zhu Han, Choong Seon Hong

COVID-19 is a global epidemic. Till now, there is no remedy for this epidemic. However, isolation and social distancing are seemed to be effective to control this pandemic. In this paper, we provide an analytical model on the effectiveness of the sustainable lockdown policy that accommodates both isolation and social distancing features of the individuals. To promote social distancing, we analyze a noncooperative game environment that provides an incentive for maintaining social distancing. Furthermore, the sustainability of the lockdown policy is also interpreted with the help of a game-theoretic incentive model for maintaining social distancing. Finally, an extensive numerical analysis is provided to study the impact of maintaining a social-distancing measure to prevent the Covid-19 outbreak. Numerical results show that the individual incentive increases more than 85% with an increasing percentage of home isolation from 25% to 100% for all considered scenarios. The numerical results also demonstrate that in a particular percentage of home isolation, the individual incentive decreases with an increasing number of individuals.

14: Global versus focused isolation during the SARS-CoV-2 pandemic-A cost-effectiveness analysis
more details view paper

Posted 01 Apr 2020

Global versus focused isolation during the SARS-CoV-2 pandemic-A cost-effectiveness analysis
1,977 downloads medRxiv health economics

Amir Shlomai, Ari Leshno, Ella H. Sklan, Moshe Leshno

BackgroundThe novel coronavirus (SARS-CoV-2) pandemic is driving many countries to adopt global isolation measures in an attempt to slow-down its spread. These extreme measures are associated with extraordinary economic costs. ObjectiveTo compare the cost-effectiveness of global isolation of the whole population to focused isolation of individuals at high risk of being exposed, augmented by thorough PCR testing. DesignWe applied a modified Susceptible, Exposed, Infectious, Removed (SEIR) model to compare two different strategies in controlling the SARS-CoV-2 spread. Data sources and target populationWe modeled the dynamics in Israel, a small country with [~] 9 million people. Time horizon200 days. Interventions1. Global isolation of the whole population (strategy 1) 2. Focused isolation of people at high risk of exposure with extensive PCR testing (strategy 2). Outcome measuresNumber of deaths and the cost per one avoided death in strategy 1 vs 2. Results of Base-Case analysisThe number of expected deaths is 389 in strategy 1versus 432 in strategy 2. The incremental cost-effectiveness ratio (ICER) in case of adhering to global isolation will be $ 102,383,282 to prevent one case of death. Results of sensitivity analysisThe ICER value is between $ 22.5 million to over $280 million per one avoided death. ConclusionsAccording to our model, global isolation will save [~]43 more lives compared to a strategy of focused isolation and extensive screening. This benefit is implicated in tremendous costs that might result in overwhelming economic effects. LimitationsCompartment models do not necessarily fit to countries with heterogeneous populations. In addition, we rely on current published parameters that might not reliably reflect infection dynamics.

15: The Social and Economic Factors Underlying the Impact of COVID-19 Cases and Deaths in US Counties
more details view paper

Posted 08 May 2020

The Social and Economic Factors Underlying the Impact of COVID-19 Cases and Deaths in US Counties
1,943 downloads medRxiv health economics

Nivedita Mukherji

This paper uncovers the socioeconomic and health/lifestyle factors that can explain the differential impact of the coronavirus pandemic on different parts of the United States. Using a dynamic panel representation of an epidemiological model of disease spread, the paper develops a Vulnerability Index for US counties from daily reported number of cases over a 20-day period of rapid disease growth. County-level economic, demographic, and health factors are used to explain the differences in the values of this index and thereby the transmission and concentration of the disease across the country. These factors are also used to examine the number of reported deaths. The paper finds that counties with high median income have a high incidence of cases but reported lower deaths. Income inequality as measured by the Gini coefficient, is found to be associated with more deaths and more cases. The remarkable similarity in the distribution of cases across the country and the distribution of distance-weighted international passengers served by the top international airports is evidence of the spread of the virus by way of international travel. The distributions of age, race, and health risk factors such as obesity and diabetes are found to be particularly significant factors in explaining the differences in mortality across counties. Counties with better access to health care as measured by the number of primary care physicians per capita have lower deaths, and so do places with more health awareness as measured by flu vaccination prevalence. Environmental health conditions such as the amount of air pollution is found to be associated with counties with higher deaths from the virus. It is hoped that research such as these will help policymakers to develop risk factors for each region of the country to better contain the spread of infectious diseases in the future.

16: Face Masks Considerably Reduce Covid-19 Cases in Germany
more details view paper

Posted 29 Jun 2020

Face Masks Considerably Reduce Covid-19 Cases in Germany
1,911 downloads medRxiv health economics

Timo Friedel Mitze, Reinhold Kosfeld, Johannes Rode, Klaus Waelde

We use the synthetic control method to analyze the effect of face masks on the spread of Covid-19 in Germany. Our identification approach exploits regional variation in the point in time when face masks became compulsory. Depending on the region we analyse, we find that face masks reduced the cumulative number of registered Covid-19 cases between 2.3% and 13% over a period of 10 days after they became compulsory. Assessing the credibility of the various estimates, we conclude that face masks reduce the daily growth rate of reported infections by around 40%.

17: Financing Vaccines for Global Health Security
more details view paper

Posted 23 Mar 2020

Financing Vaccines for Global Health Security
1,452 downloads medRxiv health economics

Jonathan T. Vu, Benjamin K. Kaplan, Shomesh Chaudhuri, Monique K. Mansoura, Andrew W. Lo

Recent outbreaks of infectious pathogens such as Zika, Ebola, and COVID-19 have underscored the need for the dependable availability of vaccines against emerging infectious diseases (EIDs). The cost and risk of R&D programs and uniquely unpredictable demand for EID vaccines have discouraged vaccine developers, and government and nonprofit agencies have been unable to provide timely or sufficient incentives for their development and sustained supply. We analyze the economic returns of a portfolio of EID vaccine assets, and find that under realistic financing assumptions, the expected returns are significantly negative, implying that the private sector is unlikely to address this need without public-sector intervention. We have sized the financing deficit for this portfolio and propose several potential solutions, including price increases, enhanced public-private partnerships, and subscription models through which individuals would pay annual fees to obtain access to a portfolio of vaccines in the event of an outbreak.

18: Which Measures are Effective in Containing COVID-19?Empirical Research Based on Prevention and Control Cases in China
more details view paper

Posted 30 Mar 2020

Which Measures are Effective in Containing COVID-19?Empirical Research Based on Prevention and Control Cases in China
1,447 downloads medRxiv health economics

Shanlang Lin, Junpei Huang, Ziwen He, Dandan Zhan

Various epidemic prevention and control measures aimed at reducing person-to-person contact has paid a certain cost while controlling the epidemic. So accurate evaluation of these measures helps to maximize the effectiveness of prevention and control while minimizing social costs. In this paper, we develop the model in Dirk Brockmann and Dirk Helbing (2013) to theoretically explain the impact mechanism of traffic control and social distancing measures on the spread of the epidemic, and empirically tests the effect of the two measures in China at the present stage using econometric approach. We found that both traffic control and social distancing measures have played a very good role in controlling the development of the epidemic. Nationally, social distancing measures are better than traffic control measures; the two measures are complementary and their combined action will play a better epidemic prevention effect; Traffic control and social distancing do not work everywhere. Traffic control only works in cities with higher GDP per capita and population size, while fails in cities with lower GDP per capita and population size. In cities with lower population size, social distancing becomes inoperative; the rapid and accurate transmission of information, a higher protection awareness of the public, and a stronger confidence of residents in epidemic prevention can promote the realization of the measure effects. The findings above verify the effectiveness and correctness of the measures implemented in China at present, at the same time, we propose that it is necessary to fully consider the respective characteristics of the two measures, cooperating and complementing each other; whats more, measures should be formulated according to the citys own situation, achieving precise epidemic prevention; Finally, we should increase the transparency of information, improve protection awareness of the public, guide emotions of the public in a proper way, enhancing public confidence.

19: Estimating Impact of Austerity policies in COVID-19 fatality rates:Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OCED countries
more details view paper

Posted 06 Apr 2020

Estimating Impact of Austerity policies in COVID-19 fatality rates:Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OCED countries
1,404 downloads medRxiv health economics

Dawa Sherpa

The paper will attempt to estimate factors which determine the variability of case fatality rates of COVID-19 across OCED countries in recent time. The objective of the paper is to estimate the impact of government health policy on fatality rates (Case fatality rates) of COVID-19 in countries while controlling for other demographic and economic characteristics. The analysis is of done using non-parametric regression method, i.e. Quantile regression. The result from quartile regressions analysis shows that a policy of Austerity (health expenditure cuts) significantly increases the mortality rates of COVID-19 in OCED countries. The policy implication of the study is the need for a robust public-funded health system with wider accessibility to deals with a major public health crisis like a COVID-19 pandemic. JEL: I18, I38, C31

20: The more I fear about COVID-19, the more I wear medical masks: A survey on risk perception and medical masks uses
more details view paper

Posted 30 Mar 2020

The more I fear about COVID-19, the more I wear medical masks: A survey on risk perception and medical masks uses
1,403 downloads medRxiv health economics

Toan Luu Duc Huynh

The legal behaviors in using medical masks in public have been finally promulgated by the Vietnamese Government after 47 days since the WHO declared the Public Health Emergency of International Concern (PHEIC) due to the COVID-19 pandemic. From a sample of 345 Vietnamese respondents aged from 15 to 47 years, this brief note found that the risk perception of COVID-19 danger significantly increases the likelihood of wearing the medical masks. In addition, there is a weak evidence about the differences in age under the COVID-19 outbreaks. More noticeably, those who use masks before COVID-19 pandemic tend to maintain their behaviors. Our results offer the insightful into Vietnamese citizens responses in terms of using medical masks; even the uses of this method are still controversial. Our results are robust by performing Exploratory Factor Analysis for five features and further regressions.

Previous page 1 2 3 4 5 . . . 9 Next page

PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News