Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 70,836 bioRxiv papers from 309,131 authors.

Most downloaded bioRxiv papers, all time

in category evolutionary biology

4,576 results found. For more information, click each entry to expand.

81: Evolutionary mysteries in meiosis.
more details view paper

Posted to bioRxiv 29 Apr 2016

Evolutionary mysteries in meiosis.
2,375 downloads evolutionary biology

Thomas Lenormand, Jan Engelstadter, Susan E. Johnston, Erik Wijnker, Christoph R. Haag

Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often "weird" features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.

82: The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals
more details view paper

Posted to bioRxiv 21 Aug 2015

The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals
2,313 downloads evolutionary biology

Günter Vogt, Cassandra Falckenhayn, Anne Schrimpf, Katharina Schmid, Katharina Hanna, Jörn Panteleit, Mark Helm, Ralf Schulz, Frank Lyko

The parthenogenetic all-female marbled crayfish is a novel research model and potent invader of freshwater ecosystems. It is a triploid descendant of the sexually reproducing slough crayfish, Procambarus fallax, but its taxonomic status has remained unsettled. By cross-breeding experiments and parentage analysis we show here that marbled crayfish and P. fallax are reproductively separated. Both crayfish copulate readily, suggesting that the reproductive barrier is set at the cytogenetic rather than the behavioural level. Analysis of complete mitochondrial genomes of marbled crayfish from laboratory lineages and wild populations demonstrates genetic identity and indicates a single origin. Flow cytometric comparison of DNA contents of haemocytes and analysis of nuclear microsatellite loci confirm triploidy and suggest autopolyploidization as its cause. Global DNA methylation is significantly reduced in marbled crayfish implying the involvement of molecular epigenetic mechanisms in its origination. Morphologically, both crayfish are very similar but growth and fecundity are considerably larger in marbled crayfish, making it a different animal with superior fitness. These data and the high probability of a divergent future evolution of the marbled crayfish and P. fallax clusters suggest that marbled crayfish should be considered as an independent asexual species. Our findings also establish the P. fallax-marbled crayfish pair as a novel paradigm for rare chromosomal speciation by autopolyploidy and parthenogenesis in animals and for saltational evolution in general.

83: Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in southern Africa
more details view paper

Posted to bioRxiv 18 Feb 2014

Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in southern Africa
2,298 downloads evolutionary biology

Chiara Barbieri, Mário Vicente, Sandra Oliveira, Koen Bostoen, Jorge Rocha, Mark Stoneking, Brigitte Pakendorf

Bantu speech communities expanded over large parts of sub-Saharan Africa within the last 4000-5000 years, reaching different parts of southern Africa 1200-2000 years ago. The Bantu languages subdivide in several major branches, with languages belonging to the Eastern and Western Bantu branches spreading over large parts of Central, Eastern, and Southern Africa. There is still debate whether this linguistic divide is correlated with a genetic distinction between Eastern and Western Bantu speakers. During their expansion, Bantu speakers would have come into contact with diverse local populations, such as the Khoisan hunter-gatherers and pastoralists of southern Africa, with whom they may have intermarried. In this study, we analyze complete mtDNA genome sequences from over 900 Bantu-speaking individuals from Angola, Zambia, Namibia, and Botswana to investigate the demographic processes at play during the last stages of the Bantu expansion. Our results show that most of these Bantu-speaking populations are genetically very homogenous, with no genetic division between speakers of Eastern and Western Bantu languages. Most of the mtDNA diversity in our dataset is due to different degrees of admixture with autochthonous populations. Only the pastoralist Himba and Herero stand out due to high frequencies of particular L3f and L3d lineages; the latter are also found in the neighboring Damara, who speak a Khoisan language and were foragers and small-stock herders. In contrast, the close cultural and linguistic relatives of the Herero and Himba, the Kuvale, are genetically similar to other Bantu-speakers. Nevertheless, as demonstrated by resampling tests, the genetic divergence of Herero, Himba, and Kuvale is compatible with a common shared ancestry with high levels of drift and differential female admixture with local pre-Bantu populations.

84: Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles
more details view paper

Posted to bioRxiv 04 Jun 2014

Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles
2,266 downloads evolutionary biology

Gáspár Jékely

The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity, and in many aspects prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here I compare the dynamic properties of the prokaryotic and eukaryotic cytoskeleton, and discuss how these relate to function and the evolution of organellar networks. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing ‘active gel’, the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.

85: Comparative evidence for the independent evolution of hair and sweat gland traits in primates
more details view paper

Posted to bioRxiv 29 Sep 2018

Comparative evidence for the independent evolution of hair and sweat gland traits in primates
2,257 downloads evolutionary biology

Yana G Kamberov, Samantha M Guhan, Alessandra DeMarchis, Judy Jiang, Sara Sherwood Wright, Bruce A Morgan, Pardis C. Sabeti, Clifford J. Tabin, Daniel E Lieberman

Humans differ in many respects from other primates, but perhaps no derived human feature is more striking than our naked skin. Long purported to be adaptive, our species' unique external appearance is characterized by changes in both the patterning of hair follicles and eccrine sweat glands, producing decreased hair cover and increased sweat gland density. Despite the conspicuousness of these features and their potential evolutionary importance, there is a lack of clarity regarding how they evolved within the primate lineage. We thus collected and quantified the density of hair follicles and eccrine sweat glands from five regions of the skin in three species of primates: macaque, chimpanzee and human. Although human hair cover is greatly attenuated relative to that of our close relatives, we find that humans have a chimpanzee-like hair density that is significantly lower than that of macaques. In contrast, eccrine gland density is on average 10-fold higher in humans compared to chimpanzees and macaques, whose density is strikingly similar. Our findings suggest that a decrease in hair density in the ancestors of humans and apes was followed by an increase in eccrine gland density and a reduction in fur cover in humans. This work answers long-standing questions about the traits that make human skin unique and substantiates a model in which the evolution of expanded eccrine gland density was exclusive to the human lineage.

86: Massively parallel dissection of human accelerated regions in human and chimpanzee neural progenitors
more details view paper

Posted to bioRxiv 29 Jan 2018

Massively parallel dissection of human accelerated regions in human and chimpanzee neural progenitors
2,217 downloads evolutionary biology

Hane Ryu, Fumitaka Inoue, Sean Whalen, Alex Williams, Martin Kircher, Beth Martin, Beatriz Alvarado, Md. Abul Hassan Samee, Kathleen Keough, Sean Thomas, Arnold Kriegstein, Jay Shendure, Alex Pollen, Nadav Ahituv, Katherine S. Pollard

How mutations in gene regulatory elements lead to evolutionary changes remains largely unknown. Human accelerated regions (HARs) are ideal for exploring this question, because they are associated with human-specific traits and contain multiple human-specific variants at sites conserved across mammals, suggesting that they alter or compensate to preserve function. We performed massively parallel reporter assays on all human and chimpanzee HAR sequences in human and chimpanzee iPSC-derived neural progenitors at two differentiation stages. Forty-three percent (306/714) of HARs function as neuronal enhancers, with two-thirds (204/306) showing consistent changes in activity between human and chimpanzee sequences. These changes were almost all sequence dependent and not affected by cell species or differentiation stage. We tested all evolutionary intermediates between human and chimpanzee sequences of seven HARs, finding variants that interact both positively and negatively. This study shows that variants acquired during human evolution interact to buffer and amplify changes to enhancer function.

87: Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice
more details view paper

Posted to bioRxiv 02 Dec 2015

Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice
2,207 downloads evolutionary biology

K. Darragh, Sohini Vanjari, Florian Mann, Maria F Gonzalez-R, Colin R Morrison, Camilo Salazar, C Pardo-Diaz, Richard M. Merrill, W. Owen McMillan, Stefan Schulz, Chris D. Jiggins

Sex specific pheromones are known to play an important role in butterfly courtship, and may influence both individual reproductive success and reproductive isolation between species. Extensive ecological, behavioural and genetic studies of Heliconius butterflies have made a substantial contribution to our understanding of speciation. However, although long suspected to play an important role, chemical signals have received relatively little attention in this genus. Here, we combine morphological, chemical and behavioural analyses of a male pheromone in the neotropical butterfly Heliconius melpomene. First we identify specialized brush-like scales that are putative androconia, and lie within the shiny grey region found on the hindwing of males. We then describe six putative male sex pheromone compounds, which are largely confined to the androconial region of the hindwing of mature males, but not immature males or females. Finally, behavioural assays reveal subtle, but detectable, differences in female response to models scented with hindwing androconial extracts of mature conspecific males as compared to unscented controls. Collectively, the results describe structures involved in release of the pheromone and a list of potential male sex pheromone compounds triggering a behavioural response in females.

88: Tempo and mode of genome evolution in a 50,000-generation experiment
more details view paper

Posted to bioRxiv 15 Jan 2016

Tempo and mode of genome evolution in a 50,000-generation experiment
2,199 downloads evolutionary biology

Olivier Tenaillon, Jeffrey E. Barrick, Noah Ribeck, Daniel E. Deatherage, Jeffrey L. Blanchard, Aurko Dasgupta, Gabriel C. Wu, Sébastien Wielgoss, Stéphane Cruveiller, Claudine Médigue, Dominique Schneider, Richard E. Lenski

Adaptation depends on the rates, effects, and interactions of many mutations. We analyzed 264 genomes from 12 Escherichia coli populations to characterize their dynamics over 50,000 generations. The trajectories for genome evolution in populations that retained the ancestral mutation rate fit a model where most fixed mutations are beneficial, the fraction of beneficial mutations declines as fitness rises, and neutral mutations accumulate at a constant rate. We also compared these populations to lines evolved under a mutation-accumulation regime that minimizes selection. Nonsynonymous mutations, intergenic mutations, insertions, and deletions are overrepresented in the long-term populations, supporting the inference that most fixed mutations are favored by selection. These results illuminate the shifting balance of forces that govern genome evolution in populations adapting to a new environment.

89: Population-genomic inference of the strength and timing of selection against gene flow
more details view paper

Posted to bioRxiv 31 Aug 2016

Population-genomic inference of the strength and timing of selection against gene flow
2,193 downloads evolutionary biology

Simon Aeschbacher, Jessica P. Selby, John H. Willis, Graham Coop

The interplay of divergent selection and gene flow is key to understanding how populations adapt to local environments and how new species form. Here, we use DNA polymorphism data and genome-wide variation in recombination rate to jointly infer the strength and timing of selection, as well as the baseline level of gene flow under various demographic scenarios. We model how divergent selection leads to a genome-wide negative correlation between recombination rate and genetic differentiation among populations. Our theory shows that the selection density, i.e. the selection coefficient per base pair, is a key parameter underlying this relationship. We then develop a procedure for parameter estimation that accounts for the confounding effect of background selection. Applying this method to two datasets from Mimulus guttatus, we infer a strong signal of adaptive divergence in the face of gene flow between populations growing on and off phytotoxic serpentine soils. However, the genome-wide intensity of this selection is not exceptional compared to what M. guttatus populations may typically experience when adapting to local conditions. We also find that selection against genome-wide introgression from the selfing sister species M. nasutus has acted to maintain a barrier between these two species over at least the last 250 ky. Our study provides a theoretical framework for linking genome-wide patterns of divergence and recombination with the underlying evolutionary mechanisms that drive this differentiation.

90: Global Epistasis Makes Adaptation Predictable Despite Sequence-Level Stochasticity
more details view paper

Posted to bioRxiv 13 Jan 2014

Global Epistasis Makes Adaptation Predictable Despite Sequence-Level Stochasticity
2,189 downloads evolutionary biology

Sergey Kryazhimskiy, Daniel Paul Rice, Elizabeth Jerison, Michael M Desai

Epistasis can make adaptation highly unpredictable, rendering evolutionary trajectories contingent on the chance effects of initial mutations. We used experimental evolution in Saccharomyces cerevisiae to quantify this effect, finding dramatic differences in adaptability between 64 closely related genotypes. Despite these differences, sequencing of 105 evolved clones showed no significant effect of initial genotype on future sequence-level evolution. Instead, reconstruction experiments revealed a consistent pattern of diminishing returns epistasis. Our results suggest that many beneficial mutations affecting a variety of biological processes are globally coupled: they interact strongly, but only through their combined effect on fitness. Sequence-level adaptation is thus highly stochastic. Nevertheless, fitness evolution is strikingly predictable because differences in adaptability are determined only by global fitness-mediated epistasis, not by the identity of individual mutations.

91: Evolution of resistance against CRISPR/Cas9 gene drive
more details view paper

Posted to bioRxiv 11 Jun 2016

Evolution of resistance against CRISPR/Cas9 gene drive
2,186 downloads evolutionary biology

Andrew G. Clark, Andrew G. Clark, Philipp W. Messer

The idea of driving genetically modified alleles to fixation in a population has fascinated scientists for over 40 years. Potential applications are broad and ambitious, including the eradication of disease vectors, the control of pest species, and the preservation of endangered species from extinction. Until recently, these possibilities have remained largely abstract due to the lack of an effective drive mechanism. CRISPR/Cas9 gene drive (CGD) now promise a highly adaptable approach for driving even deleterious alleles to high population frequency, and this approach was recently shown to be effective in small laboratory populations of insects. However, it remains unclear whether CGD will also work in large natural populations in the face of potential resistance mechanisms. Here we show that resistance against CGD will inevitably evolve unless populations are small and repair of CGD-induced cleavage via nonhomologous end joining (NHEJ) can be effectively suppressed, or resistance costs are on par with those of the driver. We specifically calculate the probability that resistance evolves from variants at the target site that are not recognized by the driver's guide RNA, either because they are already present when the driver allele is introduced, arise by de novo mutation, or are created by the driver itself when NHEJ introduces mutations at the target site. Our results shed light on strategies that could facilitate the engineering of a successful drive by lowering resistance potential, as well as strategies that could promote resistance as a possible mechanism for controlling a drive. This study highlights the need for careful modeling of CGD prior to the actual release of a driver construct into the wild.

92: Evolution and coexistence in response to a key innovation in a long-term evolution experiment with Escherichia coli
more details view paper

Posted to bioRxiv 17 Jun 2015

Evolution and coexistence in response to a key innovation in a long-term evolution experiment with Escherichia coli
2,170 downloads evolutionary biology

Caroline B. Turner, Zachary D. Blount, Daniel H. Mitchell, Richard E. Lenski

Evolution of a novel function can greatly alter the effects of an organism on its environment. These environmental changes can, in turn, affect the further evolution of that organism and any coexisting organisms. We examine these effects and feedbacks following evolution of a novel function in the long-term evolution experiment (LTEE) with Escherichia coli. A characteristic feature of E. coli is its inability to consume citrate aerobically. However, that ability evolved in one of the LTEE populations. In this population, citrate-utilizing bacteria (Cit+) coexisted stably with another clade of bacteria that lacked the capacity to utilize citrate (Cit−). This coexistence was shaped by the evolution of a cross-feeding relationship in which Cit+ cells released the dicarboxylic acids succinate, fumarate, and malate into the medium, and Cit− cells evolved improved growth on these carbon sources, as did the Cit+ cells. Thus, the evolution of citrate consumption led to a flask-based ecosystem that went from a single limiting resource, glucose, to one with five resources either shared or partitioned between two coexisting clades. Our findings show how evolutionary novelties can change environmental conditions, thereby facilitating diversity and altering both the structure of an ecosystem and the evolutionary trajectories of coexisting organisms.

93: Inferring Continuous and Discrete Population Genetic Structure Across Space
more details view paper

Posted to bioRxiv 15 Sep 2017

Inferring Continuous and Discrete Population Genetic Structure Across Space
2,160 downloads evolutionary biology

Gideon S. Bradburd, Graham M. Coop, Peter L. Ralph

A classic problem in population genetics is the characterization of discrete population structure in the presence of continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the use of clustering or assignment methods may incorrectly ascribe differentiation due to continuous processes (e.g., geographic isolation by distance) to discrete processes, such as geographic, ecological, or reproductive barriers between populations. This reflects a shortcoming of current methods for inferring and visualizing population structure when applied to genetic data deriving from geographically distributed populations. Here, we present a statistical framework for the simultaneous inference of continuous and discrete patterns of population structure. The method estimates ancestry proportions for each sample from a set of two-dimensional population layers, and, within each layer, estimates a rate at which relatedness decays with distance. This thereby explicitly addresses the “clines versus cluster” problem in modeling population genetic variation. The method produces useful descriptions of structure in genetic relatedness in situations where separated, geographically distributed populations interact, as after a range expansion or secondary contact. We demonstrate the utility of this approach using simulations and by applying it to empirical datasets of poplars and black bears in North America.

94: Convergent regulatory evolution and the origin of flightlessness in palaeognathous birds
more details view paper

Posted to bioRxiv 08 Feb 2018

Convergent regulatory evolution and the origin of flightlessness in palaeognathous birds
2,148 downloads evolutionary biology

Timothy B. Sackton, Phil Grayson, Alison Cloutier, Zhirui Hu, Jun S. Liu, Nicole E. Wheeler, Paul P. Gardner, Julia A. Clarke, Allan J. Baker, Michele Clamp, Scott V. Edwards

The relative roles of regulatory and protein evolution in the origin and loss of convergent phenotypic traits is a core question in evolutionary biology. Here we combine phylogenomic, epigenomic and developmental data to show that convergent evolution of regulatory regions, but not protein-coding genes, is associated with flightlessness in palaeognathous birds, a classic example of a convergent phenotype. Eleven new genomes, including a draft genome from an extinct moa, resolve palaeognath phylogeny and show that the incidence of independent, convergent accelerations among 284,000 conserved non-exonic elements is significantly more frequent in ratites than other bird lineages. Ratite-specific acceleration of conserved regions and measures of open chromatin across eight tissues in the developing chick identify candidate regulatory regions that may have modified or lost function in ratites. Enhancer activity assays conducted in the early developing chicken forelimb confirm that volant versions of a conserved element in the first intron of the TEAD1 gene display conserved enhancer activity, whereas an accelerated flightless version fails to drive reporter gene expression. Our results show that convergent molecular changes associated with loss of flight are largely regulatory in nature.

95: Inferring Phylogenetic Networks Using PhyloNet
more details view paper

Posted to bioRxiv 22 Dec 2017

Inferring Phylogenetic Networks Using PhyloNet
2,137 downloads evolutionary biology

Dingqiao Wen, Yun Yu, Jiafan Zhu, Luay K. Nakhleh

PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or bi-allelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudo-likelihood measure. PhyloNet summarizes the results of the various analyses, and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

96: Random Sequences Rapidly Evolve Into De Novo Promoters
more details view paper

Posted to bioRxiv 09 May 2017

Random Sequences Rapidly Evolve Into De Novo Promoters
2,118 downloads evolutionary biology

Avihu H. Yona, Eric J. Alm, Jeff Gore

How do new promoters evolve? To follow evolution of de novo promoters, we put various random sequences upstream to the lac operon in Escherichia coli and evolved the cells in the presence of lactose. We found that a typical random sequence of ~100 bases requires only one mutation in order to enable growth on lactose by increasing resemblance to the canonical promoter motifs. We further found that ~10% of random sequences could serve as active promoters even without any period of evolutionary adaptation. Such a short mutational distance from a random sequence to an active promoter may improve evolvability yet may also lead to undesirable accidental expression. We found that across the E. coli genome accidental expression is minimized by avoiding codon combinations that resemble promoter motifs. Our results suggest that the promoter recognition machinery has been tuned to allow high accessibility to new promoters, and similar findings might also be observed in higher organisms or in other motif recognition machineries, like transcription factor binding sites or protein-protein interactions.

97: Sex-dependent dominance at a single locus maintains variation in age at maturity in Atlantic salmon
more details view paper

Posted to bioRxiv 17 Aug 2015

Sex-dependent dominance at a single locus maintains variation in age at maturity in Atlantic salmon
2,113 downloads evolutionary biology

Nicola J. Barson, Tutku Aykanat, Kjetil Hindar, Matthew Baranski, Geir H Bolstad, Peder Fiske, Céleste Jacq, Arne J. Jensen, Susan E. Johnston, Sten Karlsoon, Matthew Kent, Eero Niemelä, Torfinn Nome, Tor F. Næsje, Panu Orell, Atso Romakkaniemi, Harald Sægrov, Kurt Urdal, Jaakko Erkinaro, Sigbjørn Lien, Craig Robert Primmer

Males and females share many traits that have a common genetic basis, however selection on these traits often differs between the sexes leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific genetic loci behind sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here, we identify a large effect locus controlling age at maturity in 57 salmon populations, an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex dependent dominance reducing intralocus sexual conflict and maintaining adaptive variation in wild populations. Using high density SNP data and whole genome re-sequencing, we found that vestigial-like family member 3 (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39.4% of phenotypic variation, an unexpectedly high effect size for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal permitting greater optimisation of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We further anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed

98: Fecundity selection theory: concepts and evidence
more details view paper

Posted to bioRxiv 23 Feb 2015

Fecundity selection theory: concepts and evidence
2,104 downloads evolutionary biology

Daniel Pincheira-Donoso, John Hunt

Fitness results from the optimal balance between survival, mating success and fecundity. The interactions between these three components of fitness vary importantly depending on the selective context, from positive covariation between them, to antagonistic pleiotropic relationships when fitness increases in one reduce fitness of others. Therefore, elucidating the routes through which selection shapes life history and phenotypic adaptations via these fitness components is of primary significance to understand ecological and evolutionary dynamics. However, while the fitness components mediated by natural (survival) and sexual (mating success) selection have extensively been debated from most possible perspectives, fecundity selection remains considerably less studied. Here, we review the theory, evidence and implications of fecundity selection as a driver of sex-specific adaptive evolution. Based on accumulating literature on the life-history, phenotypic and ecological aspects of fecundity, we (i) suggest that ‘fecundity’ is restricted to refer to brood size per reproductive episode, while ‘annual’ and ‘lifetime fecundity’ should not be used interchangeably with ‘fecundity’ as they represent different life history parameters; (ii) provide a generalized redefinition of fecundity selection that encompasses any traits that influence fecundity in any direction (from high to low) and in either sex; (iii) review the (macro)ecological basis of fecundity selection (e.g., ecological pressures that influence predictable spatial variation in fecundity); (iv) suggest that most ecological theories of fecundity selection should be tested in organisms other than birds; (v) argue that the longstanding fecundity selection hypothesis of female-biased sexual size dimorphism (SSD) has gained inconsistent support, that strong fecundity selection does not necessarily drive female-biased SSD, and that this form of SSD can be driven by other selective pressures; and (vi) discuss cases in which fecundity selection operates on males.

99: A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
more details view paper

Posted to bioRxiv 18 Feb 2018

A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
2,067 downloads evolutionary biology

Jeffrey Chan, Valerio Perrone, Jeffrey P. Spence, Paul A Jenkins, Sara Mathieson, Yun S. Song

Inference for population genetics models is hindered by computationally intractable likelihoods. While this issue is tackled by likelihood-free methods, these approaches typically rely on hand-crafted summary statistics of the data. In complex settings, designing and selecting suitable summary statistics is problematic and results are very sensitive to such choices. In this paper, we learn the first exchangeable feature representation for population genetic data to work directly with genotype data. This is achieved by means of a novel Bayesian likelihood-free inference framework, where a permutation-invariant convolutional neural network learns the inverse functional relationship from the data to the posterior. We leverage access to scientific simulators to learn such likelihood-free function mappings, and establish a general framework for inference in a variety of simulation-based tasks. We demonstrate the power of our method on the recombination hotspot testing problem, outperforming the state-of-the-art.

100: Late mitochondrial origin is pure artefact
more details view paper

Posted to bioRxiv 25 May 2016

Late mitochondrial origin is pure artefact
2,061 downloads evolutionary biology

William F. Martin, Mayo Roettger, Chuan Ku, Sriram G. Garg, Shijulal Nelson-Sathi, Giddy Landan

Pittis and Gabaldon(1) recently claimed that the mitochondrion came late in eukaryotic evolution, following an earlier phase of evolution in which the eukaryotic host lineage acquired genes from bacteria. Here we show that their paper has multiple fatal flaws founded in inappropriate statistical methods and analyses, in addition to erroneous interpretations.

Previous page 1 2 3 4 5 6 7 8 9 . . . 229 Next page


Sign up for the Rxivist weekly newsletter! (Click here for more details.)